

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 12-15 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02101215 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 12

An Extensive Analysis of Deadlock Resolution Algorithms

Kamala PL, Sri Abinaya S, Swarnalakshmi D, Dr. M. Sujithra

M.C.A., M.Phil., Phd, Dr.A.D. Chithra M.C.A., M.Phil., Phd
2

nd
 Year M.Sc Software Systems (Integrated) Coimbatore Institute of Technology, Coimbatore.

Assistant Proferssor, Department of Data Science Coimbatore Institute of Technology,Coimbatore.

Assistant Proferssor,Department of Software Systems Coimbatore Institute of Technology, Coimbatore.

Date of Submission: 20-11-2020 Date of Acceptance: 03-12-2020

--

ABSTRACT: A deadlock is a situation where set

of processes waits for resources held by other

processes in the same set. This phenomenon

implies disaster in man-made systems; therefore, it

must be carefully handled by system designers,

analysts and engineers. The processes in deadlock

waits indefinitely for the resources and the

resources held by these processes are not available

for any other process. These processes never

terminate their execution. Sometimes it may lead to

a serious system failure. The deadlock is resolved

using a Deadlock resolution algorithm. The

primary step is to select the victim, then evict/abort

the victim or cause it to rollback. This step resolves

the deadlock easily. This paper describes wait for

graph (deadlock detection) and some deadlock

resolutionalgorithms to resolve the deadlock using

different criteria.

KEYWORDS: Deadlock, Resources, Processes,

Release, Deadlock prevention, Deadlock

resolution, wait for graph, Deadlock handling, VGS

Algorithm.

I. INTRODUCTION:
Deadlock occurs when no process

proceeds for execution, each waits for resources

that has been taken by other processes. For

example, one can’t the job without having the

(professional) experience and one can’t get the

experience without having a job.

Traffic gridlock is an everyday example of

a deadlock situation. There is a variant of deadlock

called livelock. It is important to note that the

number of processes and the number and kind of

resources possessed and requested are unimportant.

The resources may be either physical or logical.

Examples of physical resources are printers, tape

drivers, memory space and CPU cycles. Examples

of logical resources are files, semaphores and

monitors.The sequence in which the process

utilizes a resource is Request, Use and Release.

Deadlock can be detected by the wait-for-graph. A

deadlock needs to be resolved timely otherwise, the

deadlock size will increase. The deadlock size is

defined as the total number of blocked processes

(BP) involved in deadlock, where BP refers to

processes that waits indefinitely on resources

acquired by other processes. Deadlock can be

resolved by avoiding at least one of the four

conditions, mutual exclusion, hold and wait, no

pre-emption and circular wait. Because, all these

four conditions are required simultaneously to

cause deadlock.

PROBLEM SPECIFICATION:

Most of the deadlock resolution

algorithms imply rollback/abort as the solutions to

deadlock. The only difference lies in the criteria for

selecting victim. In this case, evicting the victim, or

restarting the victim leads to wastage of resources,

wastage of work done by the aborted processes,

low throughput of system and the process

execution time becomes unpredictable. Restarting a

process is more expensive than waiting, thus

aborting the victim needs to be avoided.

 Therefore, in this paper an algorithm that

do not cause any aborts/rollbacks is proposed. It

resolves the deadlock with the mutual cooperation

of the transactions.

DEADLOCK:

A deadlock is a situation in which every process

of a group, is waiting for another process,

including itself, to acquire action, i.e., releasing

a lock.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 12-15 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02101215 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 13

Figure 1. Deadlock in Operating Systems

It is a common problem in

multiprocessing systems, parallel computing. In

a communication system, deadlocks occur

mainly due to lost or corrupt signals rather than

resource conflict.

If the resources aren't available at that point , the

method enters a wait state. Waiting processes

may never turn again because the resources they

need requested are held by other waiting

processes. This situation is called deadlock. A

process requests a resource before using it, and

releases resource after using it.

1. Request: If the request is not permitted

immediately then the requesting process waits

until it acquires the resource.

2. Use: the method can operate the resource

3. Release: The process releases the resource.

METHODS FOR HANDLING DEADLOCK:

1. Process Termination:

To eliminate the deadlock, we will simply kill

one or more processes. For this, we use two

methods:

(a) Abort all the Deadlocked Processes:

Aborting all the processes will definitely break

the deadlock, but with an excellent expense. The

deadlocked processes may have computed for an

extended time and therefore the results of those

partial computations must be discarded and

there's a probability to recalculate them later.

(b) Abort one process at a time till eliminating

deadlock:

Until deadlock cycle is eliminated from the

system, abort one deadlocked process at a time,.

This method, there can cause considerable

overhead, because after aborting each process,

there is a run deadlock detection algorithm to

check if any processes is still deadlocked.

2. Resource Pre-emption:

(a) Selecting a victim:

The resources and processes that are to be pre-

empted and also the order to minimize the cost,

are determined

(b) Rollback:

We must determine what should be done with

the process from which resources are pre-

empted. One simple idea is total rollback. That

means abort the process and restart it.

(c)Starvation:

In a system, it should happen that very same

process is usually picked as a victim. Finally,

that process will never complete its assigned

task. It is called Starvation and must be

prevented. One solution is that a process must

be picked as a victim only a fixed number of

times.

II. RESOLUTION ALGORITHM:
A. RESOLUTION BY USING TIMESTAMP

The criteria chosen for aborting the

victim is based on timestamp. Every process are

assigned with a timestamp when they enter the

system. The timestamp of the younger process is

greater than that of the older process. The

process with a higher timestamp i.e., younger

process is aborted first. The reason for choosing

process is that it would have consumed less

resources and less CPU time.

The problem here is that, the it causes

starvation, because every time aborting a

younger process can lead to its starvation,

preventing its completion.

B. RESOLUTION BY USING BURST TIME

The criteria chosen for aborting the

victim is based on the burst time of the

processes. Burst time is the CPU time needed by

a process for its execution. To break the

deadlock cycle, the process with maximum burst

i.e., older process is aborted first. The problem

here is that, the older process would have

consumed more resources and been in the

system for very long, but still it doesn’t

complete its execution. This is an inefficient

approach.

C. RESOLUTION BY DEGREE

The criteria chosen for aborting the

victim is based on the degree of the processes.

In wait – for – graph approach, the degree

determines how many resources a process is

holding and how many process a resource is

requesting. There are two types of degrees. In-

degree: denotes the number of resources held by

a process. Out-Degree: denotes the number of

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 12-15 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02101215 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 14

resources requested by a process. Degree of a

process is calculated by taking sum of in-degree

and out-degree. The process having highest

degree is aborted first.

D. RESOLUTION BY BOTH TIMESTAMP

AND BURST TIME

The younger process with higher burst time is

chosen as the victim.

The advantage of choosing this

approach is that younger process which takes

maximum burst time is aborted and it allows

processes with less execution time to complete

first.

E. RESOLUTION BY BOTH BURST TIME

AND DEGREE

The process with highest burst time and

highest degree is chosen as the victim i.e., the

process having more resource request and high

time to complete will be aborted. The advantage

of choosing this approach is that choosing

processes with high burst time and high degree

will release maximum resources needed for

completion of other process with less execution

time needed.

F. RESOLUTION BY BOTH DEGREE AND

TIMESTAMP

A younger process with higher degree

will be aborted. The problem of starvation

which occurs when selecting a process based on

timestamp will be avoided in this case as the

degree of the node is also considered along with

timestamp so as to pick victim for resolving

deadlock within the system.

G. VGS ALGORITHM FOR

DEADLOCK RESOLUTION

It is an efficient deadlock

resolutionalgorithm. This algorithm is based on

themutual cooperation of transactions and

isdescribed as follows:

Figure 2. A Deadlock cycle

Suppose Ti, Ti+1, Ti+2………Tnare the

transactions involved in a deadlock.They form a

deadlock cycle such that Tiholds resource Ri, Ti+1

holds resourceRi+1, Ti+2 holds

resourceRi+2…………..Tn holds Rn and Ti

isrequesting for resource Ri+1 , Ti+1 isrequesting

for resource Ri+2 ……,Tn isrequesting for Ri.

Since each transaction isholding a resource and

waiting indefinitelyfor other resource held by the

othertransaction, they form a deadlock cycle

andnone of them is being able to proceedahead.In

the proposed deadlock resolutionalgorithm

transaction, coordinator observesthe scenario and it

suspends Ti+1 for somerandom t seconds and it

releases resourceRi+1 which is acquired by the

requestingPi Pj Pk transaction Ti. For t seconds it

has been alloted a resource which is the time

periodin which Ti+1 has been suspended. Ti

issupposed to utilize Ri+1 and execute successfully

in t seconds. If Ti successfullyexecutes before t

seconds it sends amessage to coordinator that it

hassuccessfully executed and to resumetransaction

Ti+1 and gives its resourceRi+1 back to Ti+1. If Ti

is not able tocomplete its execution within t

secondcoordinator pre-empts resource Ri+1 fromTi

and provides it back to Ti+1. The valueRi+1 is the

value partially updated by Ti.Now Ti+1 will check

whether Ti is stillrequesting for Ri+1. If it is

requesting, Ti+1informs coordinator and is

suspended againfor some random t seconds and

resourceTi is alloted to Ri+1 again andTi receives

itand resumes its execution and whencompleted

before t seconds Ti informscoordinator to resume

Ti+1 and gives backresource Ri+1 to Ti+1.

III. ALGORITHM:
TRANSACTION (Ti, Ti+1….Tn),

RESOURCE (Ri, Ri+1……Rn)

START:

Suppose Ti………..Tn be the transactionsinvolved

in a deadlock and form a cycle.

BEGIN,

Ti holds resource Ri, Ti+1 hold resourceRi+1…Tn

holds resource Rn andTi requests resource

Ri+1,Ti+1 requestsresource Ri+2…Tn requests

resource RiEach transaction is in a circular wait

andhold condition

DO,Coordinator suspends transaction Ti+1 andTn

for random t seconds and releasesresource Ri+1

and Rn respectively.

{

Ri+1 is now taken by transaction Ti and itexecutes.

{

IF Ti executes successfully before t seconds

{{

International Journal of Advances in Engineering and Management (IJAEM)

Volume 2, Issue 10, pp: 12-15 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-02101215 | Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 15

Ti informs coordinator to resume Ti+1, Ti+1

resumes and takes the resource Ri+1back.

}

Now Ti+1 will wait for resource Ri+2 andwill

proceed successfully as there is nodeadlock now

}ELSE{

Ti+1 preempts the resource from Ti and

value of Ri+1 will be the value partially

updated by Ti

}

Ti+1 CHECKS

IF

Ti is still requesting for resource Ri+1{{

Coordinator again suspends Ti+1 forrandom t

seconds andgives the resource Ri+1 to Ti, it will

acquire the resource Ri+1 and willlock it. After Ti

executes successfully itreleases Ri+1. Ti informs

coordinator toresume Ti+1 and gives its resource

Ri+1back

}

Now Ti+1 will wait for resource Ri+2 andwill

proceed successfully as there is nodeadlock now

}

ELSE Ti+1 will wait for resource Ri+2 andwill

proceed successfully as there is nodeadlock now

}

IV. CONCLUSION:
In this paper we presented

differentdeadlock resolution algorithms

whichresolves deadlock. A detailed explanationof

VGS algorithm which solves deadlockeffectively is

explained. As the paperdescribes in this algorithm

the transactionsresolve deadlock with the

mutualcooperation of each other. Transaction

Ti+1and Tn suspend themselves and let

othertransactions proceed successfully

andcontinuously co-operate them till they arenot

able to commit successfully. Thisalgorithm does

not cause anyabortion/rollback, which shows

itseffectiveness. In the proposed algorithm

thecoordinator manages its own transactionsand

resolves any deadlock if detected.

REFERENCE:
[1]. M. Singhal, “Deadlock Detection in

Distributed Systems, “Computer, vol, 40, no.

8, pp. 37-48, Nov. 1989.

[2]. SeemaPayal, Ruchi Taneja, “Deadlock – A

problem of Computer system, “Volume 5,

pp.413-416, Aug 2015.

[3]. Sumika Jain, Nitin Kumar, Kuldeep

Chauhan, “An overview on Deadlock

Resolution Techniques, “ Volume 7, Issue

12, pp.1-3, 2019.

[4]. PoojaChahar, Surjeet Dalal, “Deadlock

Resolution Techniques: An Overview, vol 3,

Issue 7, July 2013.

[5]. Kunwar Singh, Menka Goswami, Ajit Singh,

“ VGS Algorithm – an Efficient Deadlock

Resolution Method, vol 44-No.1, April

2012.

